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AlphaFold 2 —

AlphaFold 2 successfully predicted proteins

What about the other molecules? Proteins
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Biological molecules

e Biological function of molecules is
directly linked to the 3D structure

e Experimental methods are expensive in
both time and money

e Interest to have computational
methods: compute 3D structures of
molecules from the raw sequence

e Could then be used for gene therapy for
instance, to understand diseases, etc.

DNA RNA Proteins



AlphaFold 3 %

Proteins

AlphaFold 3

AlphaFold 3 has extended the predictions to
different molecules (DNA, RNA, ions, ligands)
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e Let's have a quick overview of AlphaFold 2 to understand the changes

of AlphaFold 3
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e Let's understand what is the output of the prediction




AlphaFold ¢
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e AF2 outputs backbone frames (3x3) and (3)

Prediction of angles to compute all atom positions
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AlphaFold ¢
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e Given two sets of points, we can find the rotation (3x3) and
translation (3x1) matrices that convert one set of points to the other

e Instead of predicting all the atom positions, AF2 outputs the
rotation/translation matrices that converts one base frame into
global conformation



AlphaFold ¢

Bond angles

e Amino acid main atoms can be defined as follows
e AF2 wants to only output main atoms per amino acid

One amino acid
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AlphaFold ¢

Coarse-grained structure Full-atom structure

e Example of reconstruction with an RNA (AF2 did it ONLY for proteins)
e |t gives only the skeleton, not the full structure
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AlphaFold ¢

One amino acid

Bond angles

e Dihedral angles were also predicted
e Given torsional angles, we can reconstruct missing atoms
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AlphaFold ¢

e Torsional angles could only be used on
proteins, and not on other molecules

e Vocabulary used (in the MSA for instance)
only considered the amino acids

-> AF2 was not directly adaptable to DNA,
RNA, etc.

VS

Proteins
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AlphaFold 3

N
Template N 5B

search :
— s T S Confidence
Genetic | = e 1 1 3 module
search | &= ‘ 1 l (4 blocks)
Template L MSA |
Input
Cotifoter ».%) embedder —:—» module module — . 0 = =100
ti o (3 blocks) | pair (2 blocks) (4 blocks) Pairformer o Diffusion 2 g
Sequences, - e (48 blocks) > module 539
ligands, _ia % (8+24 +3blocks) w%“w
covalent Single | A - A
bonds i
Recycling Diffusion iterations

e AF3 architecture:
o Modify the MSA integration

o Evoformer changed to Pairformer

O

Do not predict rotation/translation matrices but diffusion module
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e Pairformer:

o Triangle update using corresponding graph (same as AF 2)
o No more MSA representation at this step but pair representation
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AlphaFold 3
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e Triangle multiplicative updates
e Convert pair representation to edges of graph
e Updates only on given type of edges
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e Diffusion module
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e Go from atom representation to tokens to atom again (full-atom
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AlphaFold 3
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e Loss for the diffusion and loss for the global model

e Training is done in three steps:

o Initial training with 384 tokens

o Fine tuning with 640 tokens
o Final tuning with 768 tokens
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AlphaFold 3

e AF3 uses 5 datasets with the training process:
1. Sample a dataset according to the weights
2. Draw an example from the dataset
3. Sample a structural crop from the example (with cropping
strategy: contiguous, spatial or spatial interface)
e Distillation sets obtained from self prediction or AlphaFold 2 predictions

Name Description Sampl. strategy  Weight
Weighted PDB Ground truth PDB structures weighted 0.5
Disordered protein PDB distillation  Proteins with unresolved residues weighted 0.02
Protein monomer distillation Protein monomer predictions from MGnify uniform 0.495
Short protein monomer distillation  Protein short monomer predictions from MGnify uniform 0.005
RNA distillation RNA monomer predictions from Rfam uniform 0.05
Transcription factor negatives MGnify protein + random DNA uniform 0.01!
Transcription factor positives DNA-+protein predictions from JASPAR uniform 0.02!
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AlphaFold 3

Sequence-local atom attention: reduce

cost of training
Diffusion module:
o Train a denoiser to remove

Gaussian noise from the positions

of all heavy atoms

o No geometrical biases involved
o Create 48 random versions of the

input by applying random

translation/rotation
Combined loss (frame alignment,
distogram, confidence head, etc)

LDDT

100

flat atoms

swoje 1e|}

Fine Fine

Initial training tune 1 tune 2
1 1

#_jﬁ__ Intraligand

i Intra-RNA

g i i

! 1

i E____ Intraprotein
i ! . Intra-DNA

i !

1 1

I

|
PN, PO N S
1

Protein-ligand
Protein—protein

1 1 -
e o

g' ——— — " 1
AL . ! ! Protein-DNA
// Nn/‘*"\ |

/ l,\,\fyt/-/\ Protein-RNA
€ ! i
1 1
1 1
T T T T T T

T
0 20 40 60 80 100 120 140

Eloss — (lconfidence (Eplddt + L‘pde + ﬁresolved + (pae - Epae) ~+ Qdiffusion * Ediffusion + (distogram - Edistogram 23



AlphaFold 3

Success (%)
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AF3 has competitive results on different tasks: ligands, RNA, docking,
proteins, etc.
Can also input structures up to 5000 tokens (1 token = 1 residue: nucleic
acid or amino acid)
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AlphaFold 3

What about the results for RNAs?
\
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Alphakold 3 for RNAS

We did a work on
benchmarking AF3 to
state-of-the-art methods
for RNAs

Cold (e} o]

Spring

Harbor l o lV
Laboratory

THE PREPRINT SERVER FOR BIOLOGY

New Results
Has AlphaFold 3 reached its success for RNAs?

Clément Bernard, Guillaume Postic, 2 Sahar Ghannay, Fariza Tahi

doi: https://doi.org/10.1101/2024.06.13.598780

This article is a preprint and has not been certified by peer review [what does this mean?].
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Alphakold 3 for RNAS

Benchmark of ten
existing predictive
methods for RNA 3D
structure prediction
Use of five different
datasets

More than 300
predictions of
AlphaFold 3 made
(online ...)

/ RNA-Puzzles

N\

/

CASP-RNA

RNASolo \
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Alphafold 3 for RNAS

e FEach metricis

normalised to
be better
when close to
1

Consider the
sum of
cumulative
metrics

-> the higher, the
better
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Alphakold 3 for RNAS

Main results

e AF3 has competitive results,

outperforming state-of-the-art
methods on two datasets

RNA-Puzzles

AlphaFold 3
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Alphakold 3 for RNAS

Main results

e AF3 has competitive results,
outperforming state-of-the-art
methods on two datasets

e Achieve very good results for

long RNAs (higher than 1000
nt)

rmalized metrics
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Alphakold 3 for RNAS

Main results

e AF3 has competitive results,
outperforming state-of-the-art
methods on two datasets

e Achieve very good results for
long RNAs (higher than 1000
nt)

e |soutperformed by
human-guided solutions

AlphaFold 3

Vfold-Pipeline (TP)
trRosettaRNA (DL)
RhoFold (DL)
IsRNA1 (AI)
3dRNA (TP)
SimRNA (AI)
RNAComposer (TP)
Vfold3D (TP)
MC-Sym (TP)

CASP-RNA
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Alphakold 3 for RNAS

Main results

e AF3 has competitive results,
outperforming state-of-the-art
methods on two datasets

e Achieve very good results for long
RNAs (higher than 1000 nt)

e |soutperformed by human-guided
solutions

e Bad results for orphan structures

(structure without any known RNA
families)

9
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V. Summary AFZ vs AF3



AlphaFold ¢ vs AlphaFold 3

AlphaFold 2
s
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Difference of vocabulary: add tokens for DNA and RNA
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AlphaFold ¢ vs AlphaFold 3

e MSA integration that has
less impact compared to
AF 2

e Evoformer changedto
Pairformer
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AlphaFold ¢ vs AlphaFold 3

Structure module
removed to have a
generative module with
the use of diffusion
Output directly full atom
positions instead of
backbone + dihedral
angles

Recycling
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AlphaFold ¢ vs AlphaFold 3

AlphaFold 2

e Confidence head differs: A
o Use diffusion loss
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V. Conclusion
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Advantages

Predict multiple molecules at the same time
Produce overall high quality structures
Inputs can have until 5000 tokens
Open-source since yesterday

DNA  RNA

Proteins
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Limits
e |tis mentioned in the paper the following limits:

o Stereochemistry: non respect to chirality and produce overlapping
clashing atoms

o Hallucinations in disordered region
o Some targets remain challenging to predict

o Do not predict the dynamic of the folding process
e What we experienced:

o Struggle to unseen RNA families (orphan)
o Performances do not exceed best human-guided methods
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Interested in this research area’

| have done ~10 Medium posts where

| discuss around the RNA 3D
structure subject

Tutorials using Python on how to
implement PDB manipulations,
visualisation,

Step by step guide: available for
everyone.

Link

More from Clement Bernard

R L B

« ¥ @ # % o &
{ByeY

B4 Clement Bernard

State-of-the-RNArt: benchmarking
current methods for predicting...

In previous tutorials, we discussed the
interest of RNA 3D structures, we saw...

Sep 23 03

DNA RNA Protein
B4 Clement Bernard

RNA 3D structure: a brief
introduction to RNA

Have you ever heard about DNA, RNA or
proteins? Does it remind you of some...

B4 Clement Bernard

Has AlphaFold 3 reached its
success for RNAs? Benchmark o...
Has AlphaFold 3 [1] solved the structural
folding problem for RNA?

Sep23 W2 [

!?, Clement Bernard

RNA 3D structure: Reading and
writing PDB files with BioPython...

We previously saw the importance of RNA
structures, the databases that give structutz...


https://medium.com/@clement.bernard.these/rna-3d-structure-in-depth-tutorials-on-how-to-apprehend-this-research-subject-1d138a112f17

