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Example 2 - the presumption of innocence

The case of Sally Clark

In 1999 (UK), a mother is accused of the murder of her two infant sons.

The prosecutor defense speech, based on the expert pediatrician statistics,
was overwhelming.

It convinced all of the audience, and the mother was imprisoned.
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Example 2 - the presumption of innocence

Prosecutor defense

The prosecution case relied on statistical evidence, based on Sudden infant
death syndrome (SIDS) probability.

Prosecution expert argued p(SIDS) = 1/8543

p(both SIDS) = p(SIDS)× p(SIDS) ≃ 1/73 millions.

Concluded p(innocence)≃ 1/73 millions

Royal Statistical Society reaction

In October 2001, the RSS expressed its concern at the "misuse of
statistics in the courts".

In January 2002 : "The calculation leading to 1/73 millions is false"
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Example 2 - the presumption of innocence

What went wrong

Two SIDS in the same family are not independent.

Genetic or environmental factors.

However, the reasoning is also wrong.
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Example 2 - the presumption of innocence

Bayesian analysis

Two SIDS in the same family is rare.

But infanticidal mothers are also very rare (1/500 millions).

All hypothesis should be compared.

Presumption of innocence ⇒ a priori, peoples are statistically innocents.

Guilt : evidence should be higher than the innocence prior belief.

Sally Clark was convicted after evidence of the statistics misrepresentation.
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Frequentist vs Bayesian statistics

Let’s consider 5 different dices.

First questions

Given dice and a result (i.e. D12 and 7), is this result extraordinary?

Frequentist approach: depends of what is extraordinary (p value).

Here p ≃ 8% ⇒ not extraordinary.

Different conclusion if we obtain a 10 times successive 7
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Frequentist vs Bayesian statistics

Second questions

We obtain a 7, what dice has been thrown?

We can discard D4 and D6.

Hard question using frequentist inference.

However the answer is simple when adopting a Bayesian approach.
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Frequentist vs Bayesian statistics

Bayes’ theorem

P(A)P(B|A) = P(B)P(A|B)

with A and B two events.

Allows to express the union of two events.

Laplace rewrites it several years later:

P(B|A) = P(A|B)P(B)

P(A)

Before we could only compute the probability of an event if knowing the
cause.

Laplace wrote "Mémoire sur la probabilité des causes par les événements",
1771
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Frequentist vs Bayesian statistics

Second questions

Allows for the evaluation of each hypothesis

We are not rejecting hypothesis anymore, we compare them.

Require an a prior belief on hypothesis before testing them.
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Frequentist vs Bayesian statistics

Second questions

Posterior belief : D8 is the most probable

If another dice is thrown, we can update the prior belief.
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Summary

Bayes’ theorem

P(variable|data) = P(data|variable)P(variable)
P(data)

We want to estimate a set of variable from a posterior distribution.

Need a likelihood function and prior models.

We can work on
The observation model ⇒ likelihood.
The priors model ⇒ regularization.
The estimation strategy ⇒ computational tractability, performances.
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Observation model

Likelihood

Likelihood is a function of parameters of a statistical model.

Computed from the observations.

⇒ Observation model.
What we (almost) always do.
Traducing a real-life problem into a mathematical equation.
Maths are useful to solve problem.

Note: maximum likelihood estimation can be enough.
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Prior model

Meaning

Prior : probability knowledge before observation.

Can inform on the level of knowledge (Uniform, Spike and Slab).

Regularization (Markov chain, physical constraints)

Can be adapted to estimation strategies (assumed density filtering)
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Posterior probability

Bayes’ theorem

P(var1, var2, var3|data) ∝ P(data|var1, var2, var3)P(var1)P(var2)P(var3)

Meaning

Posterior proportional to the product of likelihood and priors.

Different type of estimator (MMSE, MAP)

Convexity is preferred.

Alternative : Markov chain Monte Carlo algorithms.

Link with optimization techniques.
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Summary

Define an observation model.

Compute the likelihood using the model and the observations.

Assign a prior model to each model parameter.

Compute the posterior distribution.

Infer estimates from the posterior distribution.
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Single-photon Lidar

Motivation

Registering of first incident photon.

Excellent temporal resolution (few ps).

Limitation to ambient illumination.
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Single-photon Lidar

Motivation

The imaging conditions determine the reconstruction problem difficulty.
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Multispectral analysis

Motivation

Complex imaging system required.

Longer acquisition time.

Data size dependent to the number of wavelengths.
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Single-waveform multispectral

Motivation

All colors acquired with a single detector 1.

Acquisition time / data size ⇒ independent to spectrum size

1X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin and G. S. Buller,
"Wavelength-time coding for multispectral 3D imaging using single-photon Lidar", Optics
Express 2018

25/60



Introduction
In practice

Lidar analysis
Pseudo-Bayesian approach

Conclusion

How and what to do

Objective

3D imaging from single waveform multispectral Lidar data.

Estimation of depth, reflectivity and background profiles.

Fast estimation process.

Uncertainty quantification.

Outline

Observation model.

Prior models.

Estimation strategy.

Results.

Conclusion and future work.
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Observation model

Standard observation model

yt |(r , b, t0) ∼ P (rg(t − t0) + b) , (1)

P : Poisson distribution.

yt : photon counts in time bin t.

r : surface reflectivity in pixel.

b : background level in pixel.

t0 : surface depth in pixel.

g : instrumental response function.
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Observation model

Standard observation model

yn,t |(r n, bn, tn) ∼ P

(
bn +

L∑
ℓ=1

rn,ℓgℓ(t − tn)

)
, (2)

P : Poisson distribution.

yn,t : photon counts of the nth photon in the tth temporal bin

r n : spectral reflectivity of the nth pixel

bn :background level of the nth pixel

L : number of wavelengths

tn : depth profile in the nth pixel

gℓ : impulse response function (IRF) associated to the ℓth wavelength

T : histograms length
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Bayesian model

Joint likelihood

p(Y |R, b, t) =
∏
n

p(y n|r n, tn, bn). (3)

Prior models

Depth : Total variation 2

p(t|ϵ) = exp [−ϵTV(t)] , (4)

Background level : Gamma

f (b|α, β) =
∏
n

G(bn|α, β), (5)

2Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin and
A. Hero, "Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma
Markov random fields", IEEE TCI 2018
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Bayesian model

Prior models

Reflectivity : Cluster-Gamma 3

f (R|kc,ℓ, θc,ℓ) =
C∏

c=1

∏
n∈Ic

L∏
ℓ=1

G(rn,ℓ; kc,ℓ, θc,ℓ), (6)

Hyperparameters, hierarchical model: gamma and inverse gamma

f (kc,ℓ, θc,ℓ) =
∏
c,l

G(kc,ℓ; 2, 0.5)1(1,∞)(kc,ℓ)IG(θn,ℓ; 1.01, 0.5). (7)

3Q. Legros, S. Meignen , S. McLaughlin, and Y. Altmann , "Expectation-Maximization
based approach to 3D reconstruction from single-waveform multispectral Lidar data", IEEE
TCI 2020
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Completing Bayesian model and Stochastic EM algorithm

Prior models

Joint posterior distribution (with Φ = ({kc,ℓ, θc,ℓ}c,ℓ), α, β):

f (R, b, t,Φ|Y ) ∝ p(Y |R, b, t)p(t)f (R, b|Φ)f (Φ), (8)

Challenging joint estimation: multimodal likelihood function

Sequential estimation ⇒ stochastic EM algorithm

(R̂, b̂, Φ̂) = argmax
R,b,Φ

∑
t

f (R, b, t,Φ|Y )

Marginal maximum a posteriori depth estimation

t̂n = argmax
tn

∑
t\n

p(t|Y , R̂, b̂, Φ̂), with t\n is t expect tn. (9)
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Estimation strategy

Computational bottlenecks

Computation of the likelihood function.

Depth sampling in the stochastic step.

Likelihood function computed on a coarser grid

Discrete range grid ⇒ used to compute marginal probability.

Depth grid subsampled by a factor Ts .

Allows satisfactory depth sampling if Ts remains lower than the delays
between each IRF.

Reducing the number of depth samples

Only one sample.

Multimodal nature of the likelihood will help for robust sampling.
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Results

Set Gℓ =
T∑

t=1
gℓ(t − tn).

SBR: Signal-to-background ratio.

MSC: Mean signal photon counts.

Comparison with C-Dirichlet 3.

Different values for Ts and Nt .

Denoted as C-Gamma {Ts ,Nt}.
MCS = 1

N

∑
n,ℓ rn,ℓGℓ

SBR = 1
N

∑
n,ℓ

rn,ℓGℓ

Tbn

3Q. Legros, S. Meignen , S. McLaughlin, and Y. Altmann , "Expectation-Maximization
based approach to 3D reconstruction from single-waveform multispectral Lidar data", IEEE
TCI 2020
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Results - Reflectivity
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Results - Depth
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Results - Computational complexity

Computational cost of competing approaches for synthetic SW-MSL data
analysis.

Similar estimation performance.

Significant speed-up.

36/60



Introduction
In practice

Lidar analysis
Pseudo-Bayesian approach

Conclusion

Results - Example

Depth/RGB reconstruction with
1.1 (bottom) and 5.7 (top) signal
photons per pixel.

Non-negligible background
(SBR= 1.4).

Comparison with existing
approach 4.

4X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin and G. S. Buller,
"Wavelength-time coding for multispectral 3D imaging using single-photon Lidar", Optics
Express 2018
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Conclusion

Conclusion

Recent Bayesian model for 3D reconstruction from single-waveform
multipectral Lidar data.

Bayesian approaches can be relatively fast.

Perform well with few information.
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Introduction

Focus on MultiComponent Signal (MCS).

x(t) =
K∑

k=1

xk(t) , with xk(t) = ak(t) ejϕk (t),

Investigated approaches

Mixture of K superimposed components.

ak(t) and ϕk(t) the time-varying amplitude and phase of component k.
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Introduction

Motivation

Variety of application.

Audio, medical, astronomical, echolocation,...

Purpose: extracting the components.
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Introduction

Limitations

Challenge in the presence of noise.

Acquisition condition, recording device, presence of outliers,...
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Introduction: Time-frequency tools

Frequency analysis

Classical approach: frequency analysis.

The Fourier transform of a signal x writes

x̂(ω) =

∫
R
x(u) e−jωu du,

with j2 = −1 and x̂ the Fourier transform of x .

However: Signal frequency can vary over time.

⇒ Short-Time Fourier Transform (STFT).

F h
x (t, ω) =

∫
R
x(u)h(t − u)∗ e−jωu du,

with z∗ the complex conjugate of z .

h the analysis window providing temporal information.
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Introduction: Time-frequency tools

Spectrograms of multi-components signals

Provide time and frequency content.

Signals components appear as ridges in the time frequency plane.

Interest : ridges position.
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Observation model

Our model

sn,m|m̄n ∼ g (m − m̄n) .

Model 1D signals sn.
Known data distribution.

m : frequency in [0,M − 1].

m̄n : ridge position in the n-th
time bin.

g(m) = 2
√

πL
M

e−(
2πmL
M )2 .

L: time spread of the analysis
window.
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Observation model

Our model

sn,m|m̄n ∼ g (m − m̄n) .

Limitations

Simple model.

Computationally attractive.

Presence of noise neglected.

Assumes for the presence of a
single component.
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Observation model

Limitations

Lack of generality of the postulated model.

Discrepancies with noisy observations.

Or in the presence of multiple components.

Inefficiency of Maximum Likelihood Estimation (MLE).

Proposed approach

Estimation performance does not only depend on the model quality.

Modification of the similarity measure5.

1Q. Legros, S. McLaughlin,Y. Altmann, S. Meignen and M. E. Davies. Robust depth
imaging in adverse scenarios using single-photon Lidar and beta-divergences, 2020.
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Estimation strategy

Note that

Performing MLE ⇔ minimizing Kullback-Leibler Divergence (KLD)
between model and observations.

KLD not suitable when the postulated model is inaccurate.
Implies model mismatch.

In the presence of external spurious noise.
When observing multicomponent signals.

Alternative variational objective

KLD replaced by the Rényi and β divergences.

Allow respectively for mode seeking character and robustness.
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Estimation strategy

Alternative inference

Variational inference based on alternative divergences.

Need for the divergences cross entropy2.

Cross entropy

For the β-divergence (β-d), β > 0

CEβ(m̄n) = −1 + β

β

∑
m

p(sn,m|m̄n)
β +

∫
p(m|m̄n)

1+βdm. (10)

For the Rényi divergence (R-d), α > 0, α ̸= 1

CEα(m̄n) =
1

α− 1
log

(∑
m

sαn,mp(sn,m|m̄n)
1+α

)
. (11)

2F. Futami, I. Sato, M. Sugiyama. Variational Inference based on Robust Divergences,
2018.
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Estimation strategy

Pseudo-Bayesian estimation

Approximate posterior distribution obtained by maximizing the evidence
lower-bound (ELBO)6

p(m̄n|sn) ∝ e−MCE(m̄n)p(m̄n). (12)

Spatial prior model p(m̄n) discussed hereafter.

Plug cross entropy for alternative objectives.

Ridge position estimated by minimum mean squared error(MMSE).

2F. Futami, I. Sato, M. Sugiyama. Variational Inference based on Robust Divergences,
2018.
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Estimation strategy

Online estimation

Ridge extraction.

Iterating on time axis.

Sequential propagation of the
information.

Spatial prior : Gaussian random
walk.

Complexity: Variational inference.

Accuracy: Backward correction.
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Estimation strategy

Sequential demodulation

Extraction of a ridge.

Update of the data.

Removing energy
associated with the
estimated component.

Stopping criterion:
method of choice7.

3V. Sucic and N. Saulig and B. Boashash. Estimating the number of components of a
multicomponent nonstationary signal using the short-term time-frequency Rényi entropy, 2011.
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Results

Numerical experiments

Reconstruction performance of a MCS.

Reconstruction quality factor: RQF = 10 log10

(
||x||2

||x−x̂||2

)
.

Assessment: Component-wise RQF.

Figure: Spectrogram of the analyzed
multicomponent signal.

Three components

Sinusoidal frequency modulated
(FM).

Linear chirp.

Sinusoid.
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Results

Table: RQF of each components (averaged over 100 realizations) for the different
competing approaches for a SNR = 10 dB.

Sinusoid Linear chirp Sin. FM chirp Average
Brevdo 16.10 15.46 2.86 11.47
Brevdo-Synchrosqueezing 16.43 15.34 5.24 12.34
Proposed β-d, β = 0.5 16.71 15.22 9.13 13.69
Proposed β-d, β = 0.8 16.45 14.92 5.49 12.29
Proposed-KLD 2.46 2.65 1.18 2.10
Proposed R-d, α = 0.5 16.59 15.24 9.57 13.80
Proposed R-d, α = 0.8 15.44 15.22 7.84 12.83

Numerical experiments

Our method obtains the best averaged RQF using R-d (α = 0.5).

Efficient recovery of the sinusoidally FM chirp.

Alternative divergences circumvent the lack of generality of our model.
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Results - examples 1

Numerical experiments

Single linear chirp component.

SNR = -15dB.

Rényi divergence, α = 0.2.
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Results - examples 2

Numerical experiments

Single linear chirp component.

SNR = -15dB.

Rényi divergence, α = 0.2.
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Conclusions and perspectives

Conclusions

A novel pseudo-Bayesian estimation procedure to demodulate MCS.

Inaccurate model.

Performances improved through estimation strategy.

Adaptive prior model.
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Conclusions

Conclusions

Bayesian approaches can be adapted to a wide range of problem.

Do not require a large amount of data.

Allow for interpretation and confidence estimation of predictions.

Not necessarily computationally expensive.

Different ways to address a problem : models, priors, estimation strategy...
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Thanks for your attention !
legros.quentin2@hotmail.fr
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