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Example 2 - the presumption of innocence

The case of Sally Clark |
@ In 1999 (UK), a mother is accused of the murder of her two infant sons.
@ The prosecutor defense speech, based on the expert pediatrician statistics,
was overwhelming.
@ It convinced all of the audience, and the mother was imprisoned.

1999
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Example 2 - the presumption of innocence

Prosecutor defense

@ The prosecution case relied on statistical evidence, based on Sudden infant
death syndrome (SIDS) probability.

@ Prosecution expert argued p(SIDS) = 1/8543
@ p(both SIDS) = p(SIDS)x p(SIDS) ~ 1/73 millions.

@ Concluded p(innocence)~ 1/73 millions

Royal Statistical Society reaction

@ In October 2001, the RSS expressed its concern at the "misuse of
statistics in the courts".

@ In January 2002 : "The calculation leading to 1/73 millions is false"
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Example 2 - the presumption of innocence

What went wrong

@ Two SIDS in the same family are not independent.
o Genetic or environmental factors.

@ However, the reasoning is also wrong.

Hypothesis :

Innocence : P(e| T 0.000000014%

1/73 millions

o

Hypothesis :

Guilty : P( | @) = 100%

3/60



Example 2 - the presu

Bayesian
Inference

P(E)

Innocence
prior

P@&)

Guilty
prior

P

—P(=e)

Probability of
innocence

—P(@e2)

Probability of
guilt

P(@ Ia ﬁ(:illitxood

4/60



Introduction

In practice

Lidar analysis
Pseudo-Bayesian approach
Conclusion

Example 2 - the presumption of innocence

Bayesian
Inference P(. .v| = :ﬂgﬁﬁigﬁe
—P(F|)
Probability of
&= innocence
P( 2 ) —
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Example 2 - the presumption of innocence

Bayesian analysis

@ Two SIDS in the same family is rare.

e But infanticidal mothers are also very rare (1/500 millions).

All hypothesis should be compared.

@ Presumption of innocence = a priori, peoples are statistically innocents.

@ Guilt : evidence should be higher than the innocence prior belief.

Sally Clark was convicted after evidence of the statistics misrepresentation.
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Frequentist vs Bayesian statistics

Probability
of events

Knowing a given theory

Frequentist statistics

Probability
of theories

Knowing given events

Bayesian statistics
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Frequentist vs Bayesian statistics

o Let's consider 5 different dices.

D4 D6

First questions
@ Given dice and a result (i.e. D12 and 7), is this result extraordinary?
o Frequentist approach: depends of what is extraordinary (p value).
@ Here p ~ 8% = not extraordinary.

o Different conclusion if we obtain a 10 times successive 7
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Frequentist vs Bayesian statistics

D4 D6

Second questions
@ We obtain a 7, what dice has been thrown?
o We can discard D4 and D6.
e Hard question using frequentist inference.

@ However the answer is simple when adopting a Bayesian approach.
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Frequentist vs Bayesian statistics

Bayes' theorem

P(A)P(B|A) = P(B)P(A|B)

e with A and B two events.
@ Allows to express the union of two events.
o Laplace rewrites it several years later:
P(A[B)P(B)
P(B|A) =

@ Before we could only compute the probability of an event if knowing the
cause.

o Laplace wrote "Mémoire sur la probabilité des causes par les événements",
1771
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Frequentist vs Bayesian statistics

Probability Probability
of x knowing of hypothesis
hypothesis H H knowing x

P(x | Ho) (o7
P(AID
P(& 1 7)
P(D 7D
P&

Second questions
@ Allows for the evaluation of each hypothesis
o We are not rejecting hypothesis anymore, we compare them.

@ Require an a prior belief on hypothesis before testing them.
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20% e 12.5%

32.56%
20% 8.3%
20% 5% 19.38%
a priori belief likelihood of the results a posteriori

belief

@ Posterior belief : D8 is the most probable

o If another dice is thrown, we can update the prior belief.
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P(data|variable) P(variable)

P(variable|data) = P(data)

@ We want to estimate a set of variable from a posterior distribution.

@ Need a likelihood function and prior models.

e We can work on

o The observation model = likelihood.
e The priors model = regularization.
e The estimation strategy = computational tractability, performances.
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o Likelihood is a function of parameters of a statistical model.

e Computed from the observations.

@ = Observation model.

o What we (almost) always do.
e Traducing a real-life problem into a mathematical equation.
e Maths are useful to solve problem.

@ Note: maximum likelihood estimation can be enough.
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@ Prior : probability knowledge before observation.

@ Can inform on the level of knowledge (Uniform, Spike and Slab).

@ Regularization (Markov chain, physical constraints)

@ Can be adapted to estimation strategies (assumed density filtering)
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P(varl, var2, var3|data)  P(data|varl, var2, var3)P(varl)P(var2)P(var3)

@ Posterior proportional to the product of likelihood and priors.
o Different type of estimator (MMSE, MAP)
o Convexity is preferred.

o Alternative : Markov chain Monte Carlo algorithms.

o Link with optimization techniques.
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@ Define an observation model.

Compute the likelihood using the model and the observations.

Assign a prior model to each model parameter.

Compute the posterior distribution.

o Infer estimates from the posterior distribution.
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Single-photon Lidar

Lidar system .

Lase‘rsurce
L[ >
T
L

SPAD detector

Motivation
@ Registering of first incident photon.
@ Excellent temporal resolution (few ps).

e Limitation to ambient illumination.
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Single-photon Lidar

——Lidar histogram . )

= Probability density function (,(‘ @
wn A -
r—10 | I | O I B
- —Lidarhistograml
8 === Probability density function . ™ J
e MRLHLAIL Iyl g el Vi TR »D
© R Y e AR [dllh 1L
S |[—Lidarhistogram
L | |==Probability density function
ol

Temporal bins
Motivation
@ The imaging conditions determine the reconstruction problem difficulty. J
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Multispectral analysis

Parallel acquisition Sequential acquisition

Laser source White light
v———

Sensor .0' p

Decomposition

Motivation
e Complex imaging system required.
@ Longer acquisition time.

e Data size dependent to the number of wavelengths.
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Single-waveform multispectral

Four waveforms

One waveform

la.

/o

Motivation

@ All colors acquired with a single detector *.

@ Acquisition time / data size = independent to spectrum size

1X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin and G. S. Buller,
"Wavelength-time coding for multispectral 3D imaging using single-photon Lidar", Optics

Express 2018
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@ 3D imaging from single waveform multispectral Lidar data.

o Estimation of depth, reflectivity and background profiles.
o Fast estimation process.

@ Uncertainty quantification.

Observation model.

Prior models.

Results.

°
°
e Estimation strategy.
°
°

Conclusion and future work.
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yel(r, b, to) ~ P (rg(t — o) + b), (1)

@ P : Poisson distribution.

@ y; : photon counts in time bin t.
o r : surface reflectivity in pixel.

@ b : background level in pixel.

@ to : surface depth in pixel.

@ g : instrumental response function.
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Observation model

Standard observation model

L
Yt (Fa, bo, ta) ~ P (bn +> raege(t - tn)> : (2)
=1 )
@ P : Poisson distribution.
® Yo+ : photon counts of the nth photon in the tth temporal bin
@ r, : spectral reflectivity of the nth pixel
@ b, :background level of the nth pixel
@ L : number of wavelengths
@ t, : depth profile in the nth pixel
@ g : impulse response function (IRF) associated to the £th wavelength
e T : histograms length )
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p(Y|R,b,t) =[] p(y,lre, tn, bn). ®3)

@ Depth : Total variation 2

p(tle) = exp[—€TV(t)], (4)
@ Background level : Gamma
f(bla, B) = [[ G(bale, B), (5)

2Y. Altmann, A. Maccarone, A. McCarthy, G. Newstadt, G. S. Buller, S. McLaughlin and
A. Hero, "Robust spectral unmixing of sparse multispectral Lidar waveforms using gamma
Markov random fields", IEEE TCl 2018
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Bayesian model

Prior models
o Reflectivity : Cluster-Gamma 3

C L

F(Rlkee;0c.0) = [T TT T G(rmei ket 6c.0), (6)

c=1nel: L=1

o Hyperparameters, hierarchical model: gamma and inverse gamma

F(kees0c,e) = [ [ G(ke,ti2,0.5)1(1,00) (ke £)TG(0ne: 1.01,0.5).  (7)

c,l

Q. Legros, S. Meignen , S. McLaughlin, and Y. Altmann , "Expectation-Maximization
based approach to 3D reconstruction from single-waveform multispectral Lidar data", IEEE
TCI 2020
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Completing Bayesian model and Stochastic EM algorithm

Prior models

e Joint posterior distribution (with ® = ({kc,¢,0c.0}c.0), v, B):
f(R,b,t,®|Y) o< p(Y|R, b, t)p(t)f(R, b|®)f (), (8)

e Challenging joint estimation: multimodal likelihood function

@ Sequential estimation = stochastic EM algorithm

(IA?, b, (f)) = argmax Z f(R,b,t,®|Y)
R,b,® .

@ Marginal maximum a posteriori depth estimation

= argmapr(t\ Y,R, b, t’f)), with t\, is t expect t,. (9)

th

t\n
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Estimation strategy

Computational bottlenecks
o Computation of the likelihood function.

@ Depth sampling in the stochastic step.

Likelihood function computed on a coarser grid
@ Discrete range grid = used to compute marginal probability.
@ Depth grid subsampled by a factor Ts.

@ Allows satisfactory depth sampling if T, remains lower than the delays
between each IRF.

Reducing the number of depth samples
@ Only one sample.

o Multimodal nature of the likelihood will help for robust sampling.
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Results

-
Set Gy = ) go(t — tn).

t=1

09

08

SBR: Signal-to-background ratio.

07

MSC: Mean signal photon counts.

08

Comparison with C-Dirichlet 3.
Different values for Ts and N;.
Denoted as C-Gamma { T, V;}.
MCS = & D ne e Ge

_ 1 n,eGe
SBR=§ >0 75,

04

03

1500

3Q. Legros, S. Meignen , S. McLaughlin, and Y. Altmann , "Expectation-Maximization
based approach to 3D reconstruction from single-waveform multispectral Lidar data", IEEE
TCI 2020
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MSC : 10 photons MSC : 44 photons

0.07 0.045 —C-Dirichlet
—C-Gamma
0.065 0.04 - C-Gamma(1,100}
~——C-Gamma{4,1}
0.06 ~—C-Gamma{10,1}
wl
W 0.055
=
0.05
0.045
0.04

SBR SBR
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Results - Depth

Fraction of pixel

100

80

60

40

MSC : 10 photons

5 10 15 20
Absolute error

Fraction of pixel

100

80

60

40

20

MSC : 44 photons

— C-Dirichlet
—C-Gamma

= C-Gamma{1,100}
—C-Gamma{4,1}
—C-Gamma{10,1}

5 10 15
Absolute error
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Computational cost of competing approaches for synthetic SW-MSL data J
analysis.

B s 2020 e e S e
% 104s 132s 350s 493s
% 43s 49s 55s 69s
m 34s 36s 38s 42s
% 530s 592s 629s 662s

@ Similar estimation performance. J

@ Significant speed-up.
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Results - Example

5.7 phot. Ren 5.7 phot. C-Gamma

o Depth/RGB reconstruction with
1.1 (bottom) and 5.7 (top) signal
photons per pixel.

@ Non-negligible background
(SBR=1.4).

o Comparison with existing
approach #.

4X. Ren, Y. Altmann, R. Tobin, A. McCarthy, S. McLaughlin and G. S. Buller,
"Wavelength-time coding for multispectral 3D imaging using single-photon Lidar", Optics
Express 2018
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@ Recent Bayesian model for 3D reconstruction from single-waveform
multipectral Lidar data.

o Bayesian approaches can be relatively fast.

o Perform well with few information.
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@ Focus on MultiComponent Signal (MCS).

X(t) = XK:Xk(t) , with Xk(t) = ak(t) e"d’k(f)’

@ Mixture of K superimposed components.

@ ai(t) and ¢ (t) the time-varying amplitude and phase of component k.
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Amplitude

= First component
Second component

0 200 400 600 800 1000

@ Variety of application.

o Audio, medical, astronomical, echolocation,...

@ Purpose: extracting the components.

15

0.5

Multicomponent signal

200

400 600 800 1000
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Introduction

1.5 3
1
— Noisy multicomponent signal
1
0.5
0
-0.5
1 -3
0 100 200 300 400 500 0 100 200 300 400 500
Time Time
Limitations

o Challenge in the presence of noise.

@ Acquisition condition, recording device, presence of outliers,...

42/60



Introduction

In practice

Lidar analysis
Pseudo-Bayesian approach
Conclusion

Introduction: Time-frequency tools

Frequency analysis
o Classical approach: frequency analysis.

@ The Fourier transform of a signal x writes

w) = /R x(u) e du,

@ with j2 = —1 and X the Fourier transform of x.

o However: Signal frequency can vary over time.
@ = Short-Time Fourier Transform (STFT).

RSP

e with z* the complex conjugate of z.

h the analysis window providing temporal information.
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NormaliZzea Trequency
NormaliZed Trequency

100 200 300 400 500 100 200 300 400 500
Time index Time index

@ Provide time and frequency content.

@ Signals components appear as ridges in the time frequency plane.

@ Interest : ridges position.
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5n,m|ﬁ7n R g(m — I'TT,—,) .

Observed signal spectrogram

l Model 1D signals sp,.
Known data distribution.

_ e m: frequency in [0, M — 1].
my, : ridge position in the n-th

Normalized frequency
2
>

°
time bin
—[Modeled observation _ 2mmL
o g(m) = e ()",
ol o L: time spread of the analysis
50 100 150 200 250 300 350 400 450 500 .
Time index window.
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5n,m|ﬁ7n R g(m — I'TT,—,) .

Normalized frequency

0.5

e
~
&

Observed signal spectrogram

—|Modeled observation

@ Simple model.

o Computationally attractive.
@ Presence of noise neglected.

@ Assumes for the presence of a
single component.

50 100 150 200 250 300 350 400 450 500
Time index
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Observation model

Limitations

Lack of generality of the postulated model.
Discrepancies with noisy observations.

Or in the presence of multiple components.

°
°
°
o Inefficiency of Maximum Likelihood Estimation (MLE).

Proposed approach
o Estimation performance does not only depend on the model quality.

e Modification of the similarity measure®.

1Q. Legros, S. McLaughlin,Y. Altmann, S. Meignen and M. E. Davies. Robust depth
imaging in adverse scenarios using single-photon Lidar and beta-divergences, 2020.
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Estimation strategy

Note that

@ Performing MLE < minimizing Kullback-Leibler Divergence (KLD)
between model and observations.

@ KLD not suitable when the postulated model is inaccurate.

@ Implies model mismatch.

o In the presence of external spurious noise.
o When observing multicomponent signals.

Alternative variational objective
o KLD replaced by the Rényi and 3 divergences.

@ Allow respectively for mode seeking character and robustness.
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Estimation strategy

Alternative inference
@ Variational inference based on alternative divergences.

o Need for the divergences cross entropy?.

Cross entropy
@ For the 3-divergence (5-d), 8 > 0

CEp(mn) = 1+5Zp(snm\mn /p(m|n-qn)1+ﬁdm. (10)

@ For the Rényi divergence (R-d), a > 0, # 1

a = \1+a
1|Og (Z Sn,mp(smm|mn) ) . (11)

CEqo(mn) =

2F. Futami, |. Sato, M. Sugiyama. Variational Inference based on Robust Divergences,
2018.
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Estimation strategy

Pseudo-Bayesian estimation

@ Approximate posterior distribution obtained by maximizing the evidence
lower-bound (ELBO)®

P(rn]s,) o & ME™ (). (12)

@ Spatial prior model p(m,) discussed hereafter.
@ Plug cross entropy for alternative objectives.

@ Ridge position estimated by minimum mean squared error(MMSE).

2F. Futami, |. Sato, M. Sugiyama. Variational Inference based on Robust Divergences,
2018.
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Estimation strategy

Spectrogram

Online estimation

o Ridge extraction.

Iterating on time axis.

Sequential propagation of the
information.

Spatial prior : Gaussian random
walk.

\ . . . . . .
tmen-1  tmen c=p>» Pseudo-Likelihood @ Complexity: Variational inference.

Spatial prior

Accuracy: Backward correction.

Pseudo-posterior
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Estimation strategy

Current data 1th estimated ridge

Sequential demodulation

@ Extraction of a ridge.

Current data 2th estimated ridge o Update of the data.

Estim .
[ @ Removing energy

associated with the

3th estimated ridge estimated component.

@ Stopping criterion:
method of choice.

3V. Sucic and N. Saulig and B. Boashash. Estimating the number of components of a
multicomponent nonstationary signal using the short-term time-frequency Rényi entropy, 2011.
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Results

Numerical experiments
@ Reconstruction performance of a MCS.
2
@ Reconstruction quality factor: RQF = 10log;, (%)

@ Assessment: Component-wise RQF.

o
S
&

o
=

Three components

§035

N @ Sinusoidal frequency modulated
2

£ (FM).

(5] . .

é 02 @ Linear chirp.

g %" @ Sinusoid.

o

o
=
5

o

0 50 100 150 200 250 300 350 400 450
time index

Figure: Spectrogram of the analyzed

multicomponent signal.
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Results

Table: RQF of each components (averaged over 100 realizations) for the different
competing approaches for a SNR = 10 dB.

Sinusoid | Linear chirp | Sin. FM chirp || Average

Brevdo 16.10 15.46 2.86 11.47
Brevdo-Synchrosqueezing | 16.43 15.34 5.24 12.34
Proposed 8-d, 8 = 0.5 16.71 15.22 9.13 13.69
Proposed -d, B8 = 0.8 16.45 14.92 5.49 12.29
Proposed-KLD 2.46 2.65 1.18 2.10

Proposed R-d, a = 0.5 16.59 15.24 9.57 13.80
Proposed R-d, & = 0.8 15.44 15.22 7.84 12.83

Numerical experiments
@ Our method obtains the best averaged RQF using R-d (o = 0.5).
o Efficient recovery of the sinusoidally FM chirp.

o Alternative divergences circumvent the lack of generality of our model.
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Results - examples 1

Numerical experiments

@ Single linear chirp component.
e SNR = -15dB.

@ Rényi divergence, a = 0.2.

Ground truth Observations Mask
50 50 50
100 \ 100 100 g
150 150 150
200 200 200
250 250 250

200 400 200 400 200 400
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Results - examples 2

Numerical experiments

@ Single linear chirp component.
e SNR = -15dB.

@ Rényi divergence, a = 0.2.

Ground truth Observations Mask
50 50
100 100
150 150
200 200
250 250

200 400
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@ A novel pseudo-Bayesian estimation procedure to demodulate MCS.

@ Inaccurate model.

@ Performances improved through estimation strategy.

o Adaptive prior model.
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o Bayesian approaches can be adapted to a wide range of problem.

@ Do not require a large amount of data.

@ Allow for interpretation and confidence estimation of predictions.

@ Not necessarily computationally expensive.

o Different ways to address a problem : models, priors, estimation strategy...
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