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Attention model [Nadaraya 1964, Watson 1964]

Motivation

Attention model is a promising way for trying to explain and validating trained
deep neural architectures.

Attention can provide insights about how a model is operating (saliency map)

Mostly related to region of interest in recognition tasks (image captioning,
machine translation, speech recognition, text processing, etc.)

Principle

Given a training dataset {(x1, y1), (x2, y2), ..., (xn, yn))}, we want to predict ŷ
from x

A naive estimator will provide : ŷ = 1
n
∑n

i=1 yi

Naradaya-Watson proposed : ŷ =
∑n

i=1 a(x , xi )yi where a(x , xi ) corresponds to
the relevance of xi to predict x (alignment function).

First attention models designed for deep learning by Bengio et al in 2014 1

1. ∗ Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv :1409.0473, 2014.
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Related work

Figure : Summary of alignment functions 2

2. Chaudhari et al. An Attentive Survey of Attention Models.https://arxiv.org/pdf/1904
.02874.pdf.
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Attention-based models in the litterature

Figure : source : https://arxiv.org/pdf/1904.02874.pdf
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Generic DL explaination approaches

Activation map (average activation accross channels)

Layer-wise-propagation (LRP) 3

Class-Activation Map (CAM, Grad-CAM, Grad-CAM++) 4

Guided backpropagation (eg. guided-Grad-CAM, guided-Grad-CAM++)

3. MONTAVON, Gregoire, BINDER, Alexander, LAPUSCHKIN, Sebastian, et al. Layer-wise
relevance propagation : an overview. Explainable AI : interpreting, explaining and visualizing
deep learning, 2019, p. 193-209.

4. Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning
deep features for discriminative localization. CoRR, abs/1512.04150, 2015.
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Proposed method (BR-NPA : Bilinear representative non-parametric
attention)

Based on a CNN architecture + fully connected classification layers (eg. ResNet-50
backbone 5).

Method Steps

1 Extract high-resolution feature maps
2 Generate Representative Feature Vectors (by grouping similar ones)
3 Concatenate the representative features vectors with classification layer

5. K. He, X. Zhang, S. Ren, and J. Sun.Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 770-778, 2016.
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High-Resolution Feature Map

Idea : Improving the interpretation of the reduced output feature map by
increasing the resolution of the attention map without (interpolation)

Approach

reducing the stride of the last downsampling layers to increase the size of
the feature maps from 14× 14 to 56× 56.

use a distillation model proposed by Hinton a

use a teacher-student model where a student network with an increased
resolution imitate the lower-resolution teacher network. The training is
completed using the following loss function :

L(ỹs , ỹt , y) =
1
N

∑
i

αCE(ỹs , y) + (1− α)KL(ỹs ||ỹt) (1)

where ỹs and ỹt are respectively the output of the student and of the
teacher models, y being the ground truth. α is a constant parameter to
balance between the cross-entropy and KullBack-Leibler divergence terms.

a. Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network,
2015.
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Representative Feature Vector

the activation ai of each feature vector corresponds to its squared l2-norm ||fi ||2

the feature vector with the maximal activation is denoted fimax

a feature vector is considered as singular if the other ones are not similar to it (in
terms of the cosine distance xẏ

||x||||y|| ))

with i ∈ {0, 1, ...H ×W − 1}, H ×W being the dimension of the feature map.
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Comparative results

Figure : From left to right : original image, guided Grad-CAM++, Grad-CAM5,
Grad-CAM++, activation map, B-CNN, BR-NPA (proposed by the authors)

5 Grad-CAM : Chattopadhyay et al. https://arxiv.org/abs/1710.11063
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Fine-grained image classification

Evaluation on 3 datasets : CUB-200-2011, FGVC-Aircraft and Standford
cars

Results expressed in terms of Accuracy (guessed)
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Person Id-reidentification
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Few-shot classification (CIFAR-FS dataset)
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Ablation study - features relevance

cf. paper, p. 9
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Ablation study - feature resolution effect

cf. paper, p. 9
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Attention map illustration 1/2
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Attention map illustration 2/2
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Conclusion

A non-parametric attention model to integrate into existing architecture

improve interpretability without a significant accuracy loss thanks to a
higher-resolution refined feature map

Paper of the author recently submitted for publication (example code will be
available after acceptance).
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